閉じる


試し読みできます

目次

目    次

  1. ユークリッドの原論
  2. 公理
  3. 公準
  4. タレスの定理
  5. 距離を測る方法
  6. 沖にある島までの距離を測る
  7. ピタゴラスの定理
  8. 三平方の定理
  9. ピタゴラス数
  10. 図形原理 問題1
  11. 図形原理 問題1の解答
  12. 図形原理 問題2
  13. 図形原理 問題2の解答
  14. 点と線と角そして円
  15. 点とは
  16. 線とは
  17. 線の種類
  18. 円とは
  19. 完全な対象図形
  20. 円周率をもとめる
  21. 角の種類
  22. 優角と劣角
  23. 鋭角と鈍角
  24. 等しくなる角
  25. 対頂角
  26. 錯角、同位角
  27. 点と線と角の問題1
  28. 点と線と角の問題1のこたえ
  29. 点と線と角の問題2
  30. 点と線と角の問題2のこたえ
  31. 円を利用して線を描く
  32. 垂線を描く
  33. 垂直二等分線を描く
  34. 角の二等分線を描く
  35. 平行線を描く
  36. 多角形
  37. 三角形
  38. 三角形の種類
  39. 二等辺三角形
  40. 正三角形
  41. 直角三角形
  42. 三角形の問題1
  43. 三角形の問題1のこたえ
  44. 三角形の問題2
  45. 三角形の問題2のこたえ
  46. 四角形
  47. 特別な四角形
  48. 正方形
  49. 長方形
  50. ひし形
  51. 平行四辺形
  52. 台形
  53. その他の多角形
  54. 多角形の問題1
  55. 多角形の問題1のこたえ
  56. 多角形の問題2
  57. 多角形の問題2のこたえ
  58. 黄金比
  59. 黄金数φ
  60. 黄金比の作図

試し読みできます

ユークリッドの原論

 紀元前300年ごろの数学者ユークリッド が幾何学の原理をまとめた書に「原論」があります。 「原論」にかかげられている五つの公理および五つの公準が、その後2000年以上に渡り、幾何学の教科書になっています。

 

公理

1、あるものと等しい二つのものは、互いに等しい。

2、同じものに同じものを加えた場合、その合計は等しい。

3、同じものから同じものを引いた場合、互いに等しい。

4、互いに重なり合うものは、互いに等しい。

5、全体は、部分より大きい。

 

公準

1、任意の点から任意の点へ線分を1本引くことが出来る。

2、線分の両端は、いずれの方向にも延長することが出来る。

3、任意の中心と距離があたえられたとき、円を描くことが出来る。

4、すべての直角は等しい。

5、1直線が2直線に交わり、同じ側の内角の和が2直角より小さいならば、この二直線は限りなく延長されると2直角より小さい角のある側において交わる。


試し読みできます

図形原理 問題1

 中心Oの円を円周上の点Cと直径線上の点Bを結んだ線で折ります。このとき、円周上の点Pが中心Oと重なりました。

 

角Xの大きさを求めなさい。


試し読みできます

図形原理 問題1の解答

CBを折り目として、折ると点PがOに重なるので、PC=OCになります。

OC=OP=OA=円の半径になるので三角形OCPは正三角形になります。

PB=OBから三角形OPBは二等辺三角形になり、角POB=角OPB=180-(60+82)=38°となります。

三角形OPAも二等辺三角形なので、角X=(180-38)÷2-38=33°となります。


試し読みはここまでです。続きは購入後にお読みいただけます。

この本は有料です。閲覧するには購入する必要があります。
購入するにはしてください。
有料本の購入に関しては、こちらのマニュアルをご確認ください。
販売価格350円(税込)

読者登録

pcpisjpさんの更新情報・新作情報をメールで受取りますか?(読者登録について